SVM Scheme for Speech Emotion Recognition using MFCC Feature

نویسندگان

  • A. Milton
  • S. Sharmy Roy
چکیده

Emotion recognition from speech has developed as a recent research area in Human–Computer Interaction. The objective of this paper is to use a 3-stage Support Vector Machine classifier to classify seven different emotions present in the Berlin Emotional Database. For the purpose of classification, MFCC features from all the 535 files present in the database are extracted. Nine statistical measurements are performed over these features from each frame of a sentence. The linear and RBF kernels are employed in hierarchical SVM with RBF sigma value equal to one. For training and testing of data, 10fold cross-validation is used. Performance analysis is done by using the confusion matrix and the accuracy obtained is 68%. General Terms Speech Processing, Emotion Recognition System

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Feature Extraction and Selection in Speech Emotion Recognition

Speech Emotion Recognition (SER) is a hot research topic in the field of Human Computer Interaction (HCI). In this paper, we recognize three emotional states: happy, sad and neutral. The explored features include: energy, pitch, linear predictive spectrum coding (LPCC), Mel-frequency spectrum coefficients (MFCC), and Mel-energy spectrum dynamic coefficients (MEDC). A German Corpus (Berlin Datab...

متن کامل

Speech Emotion Recognition Using Residual Phase and MFCC Features

Abstract--The main objective of this research is to develop a speech emotion recognition system using residual phase and MFCC features with autoassociative neural network (AANN). The speech emotion recognition system classifies the speech emotion into predefined categories such as anger, fear, happy, neutral or sad. The proposed technique for speech emotion recognition (SER) has two phases : Fe...

متن کامل

SVM based Emotional Speaker Recognition using MFCC-SDC Features

Enhancing the performance of emotional speaker recognition process has witnessed an increasing interest in the last years. This paper highlights a methodology for speaker recognition under different emotional states based on the multiclass Support Vector Machine (SVM) classifier. We compare two feature extraction methods which are used to represent emotional speech utterances in order to obtain...

متن کامل

Speaker Recognition Using DWT- MFCC with Multi-SVM Classifier

This paper describes a hybrid technique for speaker recognition. Speaker recognition is that the method of identifying the person based on characteristics like pitch, tone, Cepstral coefficients in the speech wave. Here DWT and MFCC technique is employed for feature extraction. A mix of two or lot of techniques is named hybrid technique. DWT means divide the speech signal completely into differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013